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Abstract.

Sector models are tools that make it possible to teach the basic principles of the general

theory of relativity without going beyond elementary mathematics. This contribution

shows how sector models can be used to determine geodesics. We outline a workshop for

high school and undergraduate students that addresses gravitational light deflection

by means of the construction of geodesics on sector models. Geodesics close to a

black hole are used by way of example. The contribution also describes a simplified

calculation of sector models that students can carry out on their own. The accuracy of

the geodesics constructed on sector models is discussed in comparison with numerically

computed solutions. The teaching materials presented in this paper are available online

for teaching purposes at www.spacetimetravel.org.

Keywords : general relativity, geodesics, black hole, gravitational light deflection, sector
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1. Introduction

To teach the basic principles of the general theory of relativity without going beyond

elementary mathematics remains a challenge even a century after the completion of

the theory. In view of this objective, we describe a novel approach that is focussed

on geometric insight and makes do with elementary mathematics as taught in school.

This approach is suitable for learners who lack the qualifications or the time required

to master the mathematical tools that are needed for a standard introductory text, i.e.,

advanced high school students and undergraduate students, especially those in a physics

minor programme or in physics teacher education. The approach can also be used as a

supplement to standard textbooks (e.g., Hartle 2003) to strengthen geometric insight.

In a first paper (Zahn and Kraus 2014, in the following referred to as paper I),

we have developed sector models as a new type of physical model for curved spaces

and spacetimes. We have shown how they can be used to convey the notion of a space

or a spacetime being curved. In paper I, sector models were first introduced for two-

dimensional curved surfaces of positive or negative curvature. They were then developed

for three-dimensional curved spaces and 1+1-dimensional curved spacetimes using the

Schwarzschild black hole as an example.

Sector models implement the description of curved spacetimes used in the Regge

calculus (Regge 1961) in the form of physical models. Figure 1 illustrates the basic

principle using the surface of the earth by way of example: The surface is approximated

by means of small flat elements of area. When these are laid out in the plane, one

obtains a world map; this map is the sector model of the surface of the earth. Two

differences to ordinary world maps stand out: The sector map is non-contiguous, since

it is not possible to join all sectors simultaneously to all their neighbours. Also, the

sector map is undistorted within the bounds of the discretization error, preserving both

lengths and angles. It is, therefore, open to an intuitive geometric understanding. The

sector model of a curved three-dimensional space is built along the same lines. The flat

elements of area are replaced by blocks with euclidean geometry. In the case of a curved

spacetime, the sectors are spacetime blocks with Minkowski geometry.

The general theory of relativity describes the paths of light and of free particles as

geodesics of a curved spacetime. The notion of geodesics, therefore, is an important point

in any introduction to general relativity. This contribution shows how sector models

can be used to introduce the concept of geodesics and to determine geodesics by graphic

construction. Instead of solving a system of ordinary differential equations, geodesics

are constructed with pencil and ruler. The construction implements the description

of geodesics in the Regge calculus (Williams and Ellis 1981) and gives quantitatively

correct results (within the discretization error).

In this contribution, we outline a workshop on gravitational light deflection the

way we teach it for high school and for undergraduate students (section 2). Section 3

is a discussion of the approximations involved in the construction of geodesics on sector

models and a study of the accuracy that can be achieved. Conclusions and outlook
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Figure 1. Sector model of the surface of the earth. Earth texture: NASA.

follow in section 4.

2. Workshop on geodesics and light deflection

The workshop starts by introducing the concept of geodesics, using curved surfaces by

way of example. Geodesics are then constructed on the sector model of a black hole

in order to show how gravitational light deflection arises. The black hole is used as an

example because close to it relativistic effects are large and, therefore, clearly visible in

the graphic constructions. As an extension to the workshop, we describe a simplified

procedure for the calculation of sector models that students can use to create sector

models on their own. This enables them to study the geodesics of a spacetime starting

from a given metric.

2.1. Geodesics on curved surfaces

The introduction to the workshop includes the explanation that the general theory of

relativity describes the paths of light and of free particles as geodesics. Depending on the

background of the participants, the significance of geodesics in general relativity may just

be stated or may be explained in more detail with reference to the equivalence principle

(e.g., Natário 2011, chapter 5). In preparation for the determination of geodesics in the

vicinity of a black hole, geodesics are first studied on curved surfaces.

The geodesic line on a curved surface is introduced as a locally straight line. Such

a line keeps its direction at each point, i.e., it neither bends nor kinks. A criterion

is described that permits to recognize a geodesic: One imagines that a narrow strip

made of a non-elastic material is glued along its centre line onto the line that is to

be investigated. If the line bends, the strip tears on the outside and buckles on the

inside—this shows that the line is not a geodesic.

The sphere is used as the first example (figure 2). We consider a line that starts
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Figure 2. The geodesics on the sphere are the great circles.

(a) (b)

Figure 3. A spherical cap is approximated by facets (a) and represented as a sector

model (b).

Figure 4. The construction of a geodesic on a sector model.

from the equator due north and is locally straight. It is obvious that the line is a line of

longitude. The lines of longitude, and more generally all great circles, are geodesics on

the sphere. Figure 2 illustrates a characteristic property of these geodesics: Two lines of

longitude are parallel at the equator; towards the north pole they converge. Generally

speaking, geodesics on the sphere converge when starting in parallel.

In the next step we show how this property of geodesics on the sphere can be

obtained from a sector model. A spherical cap is approximated by facets (figure 3(a)),

and the facets are laid out as a sector model (figure 3(b)). Now a geodesic is drawn

onto the sector model. Within a sector, i.e., on a flat element of area, a geodesic is

a straight line. When the line reaches the border of a sector, it is continued onto the

neighbouring sector. How to do this follows from the definition of the geodesic: locally

straight (figure 4). The two neighbouring sectors are joined at their common edge and
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(a) (b) (c)

Figure 5. Geodesics on the sector model of a spherical cap. In (a) the sectors are

joined along the bottom geodesic and in (b) along the top geodesic. The two geodesics

are parallel in the bottom left sector and converge towards the right hand side ((b),

(c)).

(a) (b)

(c) (d)

Figure 6. A saddle (a) is in part approximated by facets (b) and represented as a

sector model (c); geodesics starting parallel to each other diverge ((a), (d)).

the line is continued straight across the border. In this way the geodesic is continued

across the sector model (figure 5(a)). A second geodesic is then added that is parallel

to the first in the bottom left sector (figure 5(b)). One can see that the two geodesics

starting in parallel on the lower left converge towards the right hand side (figures 5(b),

(c)).

A saddle is taken as a second example. Adhesive strips glued to the surface show

that geodesics starting parallel to each other diverge (figure 6(a)). The approximation

of a part of the surface by facets (figure 6(b)) leads to the sector model (figure 6(c)).
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(a) (b)

Figure 7. A thought experiment on the construction of the sector model of the

black hole equatorial plane: A lattice is erected around the black hole according to

the pattern shown in (a). For each cell, the lengths of the four enclosing rods are

measured and from these data paper sectors are constructed true to scale. The result

is the sector model of a ring around the black hole (b).

On the sector model, two geodesics are constructed that are parallel to each other in

the lower left sector; these geodesics diverge (figure 6(d)).

The two examples show that sector models of curved surfaces can be used as tools

to study the properties of geodesics on these surfaces.

2.2. Geodesics close to a black hole

The second part of the workshop begins with the presentation of a sector model that

permits to construct geodesics in the vicinity of a black hole. The sector model represents

a plane of symmetry of the black hole that in the following we will call equatorial plane.‡

To introduce the sector model, its ”construction” is described in a thought

experiment: A spaceship is sent to a black hole with the task of surveying the space

around it. To this end, a lattice is erected around the black hole according to the

pattern shown in figure 7(a): Rigid rods are arranged like an orb web in the equatorial

plane, centred on the black hole. The whole lattice is located outside of the event

horizon because no such static structure is possible in the inner region of the black

hole.§ Measurements are taken of the lattice: Each cell is enclosed by four rods. The

lengths of the rods are measured and the data sent to Earth. There, each cell, reduced

‡ We consider a non-rotating black hole. It has spherical symmetry, therefore, every geodesic lies in a

plane that is a symmetry plane of the black hole.
§ The lattice covers the region from 1.25 to 5 Schwarzschild radii in the Schwarzschild radial coordinate,

see section 2.4.2.
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(a) (b)

Figure 8. A geodesic on the sector model of the equatorial plane of a black hole.

The line is locally straight; the direction ”far behind” the black hole differs from the

direction ”far ahead”. In (a) the sectors are joined along the geodesic and in (b) they

are arranged symmetrically.

in size, is represented by a sector. The complete set of sectors forms a true to scale

model of a ring around the black hole (figure 7(b)). Obviously, the sectors cannot be

arranged to cover a ring without leaving gaps. This indicates that the geometry of the

black hole equatorial plane is different from the geometry of the plane surface on which

the sectors are laid out. The equatorial plane of the black hole is part of a curved space;

the flat support of the model is a plane in euclidean space. If one could place a black

hole with the appropriate mass in the centre of the model, then all the flat pieces with

the sizes and shapes as shown would fit without gaps. The required mass amounts to

about three earth masses for the cut-out sheet that is provided online (Zahn and Kraus

2018).

Alternatively, the sector model can be introduced via the workshop on curved

space described in paper I. This workshop presents a sector model of the curved three-

dimensional space around a black hole (figure 5(b) in paper I). The equatorial plane of

this model (in figure 5(b) of paper I: the green, nearly horizontal sides of the blocks) is

identical with the sector model shown in figure 7(b).

To build the sector model shown in figure 7(b), the sectors are cut out of a sheet

of paper and are glued onto cardboard with spray adhesive (use repositionable spray

adhesive for repeated lifting and repositioning)‖. The sector model is then used to study

geodesics close to a black hole. First a single geodesic is drawn across the sector model.

As in the case of the curved surfaces described above, this is done by joining neighbouring

sectors and drawing a straight line (figure 8(a)). It can be seen that the two end sections

of the line point in different directions (Fig 8(b)). Thus, for a line that passes close to a

black hole while keeping its direction at each point, the direction ”far behind” the black

hole differs from the direction ”far ahead”. This construction illustrates the principle

underlying light deflection in a gravitational field: Light propagates on a locally straight

path; when it passes a region of curved space, the direction of propagation afterwards

is different from that before.

‖ See section 2.3 for a method that does not require the use of adhesive.
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(a) (b)

Figure 9. To the geodesic shown in figure 8, a second geodesic is added that on the

far left is parallel to the first: The inner geodesic is deflected more strongly, and the

two geodesics diverge. In (a) the sectors are joined along the second geodesic, in (b)

they are arranged symmetrically.

Two things must be borne in mind when assessing the significance of this

construction on a sector model. First, the geodesics constructed on sector models

are quantitatively correct. When the condition of a locally straight line is expressed

mathematically, the result is the geodesic equation (Weinberg 1972, p. 70 ff). The

graphically constructed geodesic is a solution of this equation. Since the sector model is

an approximate representation of the curved space, the geodesic drawn on it is likewise

an approximate solution. Using an appropriately fine subdivision, geodesics can in

principle be graphically constructed with high accuracy (section 3). Secondly one must

bear in mind that though the line constructed above is a geodesic, it is not a light ray.

This line is a geodesic in space. But light propagates in space and time, meaning that

light rays are spacetime geodesics. Nevertheless, the geodesic in space illustrates by way

of close analogy the principle behind gravitational light deflection.

Even though geodesics in space are not identical with light rays, it is instructive

to use them for demonstrating properties of geodesics. One may for instance construct

a second geodesic that starts close to the first and in the same direction (figure 9).

The geodesic that runs closer to the black hole is deflected more strongly and the two

geodesics diverge. Or one may construct two geodesics that come from the same point,

pass the black hole on opposite sides, and meet again (figure 10). Thus, with geodesics

it is possible to form a digon. Extrapolated to light rays, this construction shows how

double images arise.

2.3. The construction of geodesics using transfer sectors

Figures 8, 9, and 10 show sectors that have been cut out of a sheet of paper and have been

aligned along a geodesic or arranged symmetrically, as required. This procedure has the

advantage that each geodesic can separately be displayed as a straight line. However,

the construction of geodesics can be carried out more easily and more quickly without

cutting out all the sectors. To this end, one uses the complete model in symmetric layout

and with tick marks as shown in figure 11(a). A single additional column (figure 11(b))
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(a) (b) (c)

Figure 10. Two geodesics form a digon. This illustrates the formation of double

images due to gravitational light deflection: Light emitted from a source reaches the

observer along two different paths. In (a) and (b) the sectors are joined along the first

and the second geodesic, respectively, in (c) they are arranged symmetrically.

(a)

rS

(b)

Figure 11. Worksheet for the construction of geodesics close to a black hole. The

worksheet includes the sector model of the equatorial plane arranged symmetrically

and with tick marks (a) and a column of transfer sectors (b). The length of the scale

bar indicates the Schwarzschild radius rS of the black hole.

is cut out of a sheet of paper, these are the so-called transfer sectors. The construction

of a geodesic starts on the symmetric model and the line is first drawn up to the border

of the column (figure 12(a)). The appropriate sector of the transfer column is then

joined and the line is continued across the column of transfer sectors (figure 12(b)). The

line on the transfer column is copied onto the neighbouring column of the symmetric

model (figure 12(c)). This procedure is repeated up to the desired end point. In the

model shown in figure 11(a), equidistant tick marks have been added at the borders to
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(a) (b) (c)

Figure 12. The construction of geodesics using transfer sectors (coloured). A geodesic

is drawn up to the border of the column (a), continued across the transfer column (b),

and copied from the transfer column onto the neighbouring column (c).

facilitate the copying of the lines. The worksheet shown in figure 11 is available online

(Zahn and Kraus 2018).

2.4. The construction of sector models

A workshop can be implemented as described above, with sector models that are

provided. This is the most elementary and the shortest type of workshop. But for sector

models to realize their full potential as tools for studying curved spaces, the participants

should calculate and construct the models on their own. This enables them to study

other curved spaces in the same way, by, e.g., studying the geodesics corresponding to a

given metric. Thus, setting up and solving the geodesic equation is replaced by creating

the sector model and drawing the geodesics onto it.

The following section shows how one may introduce the calculation of sector models

by using the sphere as an example. This procedure is then extended to the calculation

of the sector model of the black hole equatorial plane.

2.4.1. Construction of the sector model of a spherical surface. This example serves to

introduce the general procedure for the construction of sector models. The starting point

is the concept of a metric as a function that takes the coordinates of two nearby points

as arguments and returns their distance. This can be introduced in an elementary way

by starting with curvilinear coordinates in the euclidean plane (e.g., Kraus and Zahn

2016; Hartle 2003, p. 21 f; Natário 2011, p. 35 f).

For the sector model of the sphere, the calculation is based on the metric in the

usual spherical coordinates θ, φ (figure 13(a)):

ds2 = R2 dθ2 +R2 sin2 θ dφ2, (1)

where R is the radius of the sphere (for an elementary derivation that can be used in

the workshop, see, e.g., Hartle 2003, p. 23 f; Natário 2011, p. 37 ff).

The creation of the sector model proceeds in three steps. In the first step the sphere

is divided up into elements of area, defined by their vertices. In the example shown here,
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(a)

2π/3

π/3

0
0 π/9

θ

φ

(b) (c)

Figure 13. (a) The sphere described in polar coordinates θ, φ and subdivided into

elements of area of 20 degrees by 20 degrees. (b) Three elements of area in φ-θ

coordinate space. (c) The corresponding sectors. They make up one column of the

model shown in figure 3(b). For clarity, one and the same sector is highlighted in grey

in all three component images.

the elements of area are quadrilaterals with vertices at 20 degree (π/9) intervals in the

angular coordinates θ and φ, respectively (figures 13(a), (b)). In the second step the

edge lengths of the quadrilaterals are computed. This is done in an approximate way

in order to keep the calculation simple. For each edge, one determines the length by

treating the end points as nearby points in the sense of the metric. For edges between

vertices with the same longitude, one obtains the length

∆s = R∆θ (∆φ = 0), (2)

in this example ∆s = Rπ/9. For edges between two vertices of the same latitude, one

finds

∆s = R sin θ∆φ (∆θ = 0), (3)

depending on the angle θ of the circle of latitude. For the sector models shown in

the figures and provided online, the distance between vertices is determined along

geodesics (see paper I). The difference between the approximate and the exact edge

lengths amounts to 0.13% at most in this example.

In step three flat pieces of area are constructed from the edge lengths. In the present

example, the elements of area on the sphere possess mirror symmetry. The flat pieces

of area are constructed with the same symmetry property in the shape of symmetric

trapezia (figure 13(c)).

2.4.2. Construction of the sector model of the equatorial plane of a black hole. The

starting point of the calculation is the metric of the equatorial plane of a black hole

ds2 =
1

1− rS/r
dr2 + r2dφ2 (4)
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0

1.25 rS

2.5 rS

3.75 rS

5 rS

0 π/6

r

φ

(a) (b)

Figure 14. Construction of the sector model of the equatorial plane of a black

hole. (a) The three elements of area of one column in φ-r coordinate space. (b)

The corresponding sectors.

with the usual Schwarzschild coordinates r and φ. Here, rS = 2GM/c2 is the

Schwarzschild radius of the black hole with mass M , G is the gravitational constant,

and c the speed of light. The sector model represents an annular part of the equatorial

plane, centred on the black hole. The inner rim is located at r = 1.25 rS and the outer

rim at r = 5 rS. The azimuthal angle φ has values between zero and 2π.

First the ring is divided up into elements of area. For that purpose, the φ-range is

subdivided into twelve segments of coordinate length π/6 each. Since the metric does not

depend on the coordinate φ, only one of the twelve segments needs to be calculated. The

r-range is subdivided into three segments of coordinate length 1.25 rS each (figure 14(a)).

Next, the edge lengths of the three quadrilaterals shown in figure 14(a) are calculated.

Using the metric, the distance between vertices with the same value of r is obtained as

∆s = r∆φ (∆r = 0). (5)

When calculating the distance of vertices with the same φ-coordinate, the first term

of the metric comes into play. Its metric coefficient 1/(1 − rS/r) depends on r and,

therefore, varies along the edge. Here we make another approximation and use the

metric coefficient at the mean r-coordinate rm of the edge:

∆s =

√

1

(1− rS/rm)
∆r (∆φ = 0), (6)

where rm = (r1 + r2)/2 with the coordinates r1 and r2 of the associated vertices. The

sector models shown in the figures and provided online are constructed with edge lengths

that are computed numerically for geodesics joining the vertices. The difference between

the approximate and the exact edge lengths is largest for the innermost radial edge and

there amounts to 5.4%.

Step three is the construction of the quadrilaterals. The subdivision of the ring

by radial cuts creates elements of area that possess mirror symmetry (figure 7(a)).
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(a) (b)

Figure 15. Two geodesics start in parallel (a), pass a vertex on opposite sides, and

are then inclined towards each other by the deficit angle (b).

In accordance with this symmetry, the sectors are constructed as symmetric trapezia.

Figure 14 shows the three sectors of a column together with the corresponding three

rectangles in φ − r coordinate space. The complete sector model with twelve columns

is shown in figure 11.

2.5. Geodesics vs. curvature

When the workshop described above is combined with the workshop on curvature

described in paper I (section 2), it is possible to address the connection between the

curvature of a surface and its geodesics. In paper I, the sphere and the saddle are

introduced as prototypes of surfaces with positive and negative curvature, respectively.

The deficit angle at a vertex of the sector model is shown to be a criterion for curvature:

Positive curvature is indicated by a positive deficit angle and vice versa.¶

Using sector models, one can show that the paths of neighbouring geodesics also

provide a criterion for determining curvature. Figure 15 shows neighbouring geodesics

near a single vertex with positive deficit angle. Two geodesics that are parallel ahead

of the vertex and pass the vertex on opposite sides (figure 15(a)) converge behind it

(figure 15(b)). By construction, the angle between the two directions behind the vertex

is the deficit angle.

Thus, geodesics starting in parallel indicate positive curvature if they converge.

Conversely, they indicate negative curvature if they diverge. Two examples for this

criterion are provided in section 2.1 in the form of geodesics on the sphere (figure 5(c))

and on the saddle (figure 6(d)). Applied to the equatorial plane of a black hole where

initially parallel geodesics diverge (figure 9), one concludes that the curvature is negative.

(Note that the curvature discussed here is the sectional curvature of the equatorial plane

only. A full description of the curvature of the 3D space around a black hole involves

¶ The deficit angle of a vertex is positive if a gap remains after joining all adjacent sectors at this

vertex (figure 15 gives an example). The deficit angle is negative if, after joining all the sectors except

one, the remaining space is too small to accommodate the last sector.
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several curvature components as discussed in paper I.)

The argument given above is an illustration of the equation of geodesic deviation

(∇u∇uD)i = −Ri
jklu

jDkul (7)

for two geodesics xi(λ) and xi(λ) +Di(λ) with ui = dxi/dλ and the Riemann curvature

tensor Ri
jkl. In the sector model, the components of the Riemann curvature tensor

are represented by the deficit angles (paper I, section 3) and figure 15 illustrates their

impact on the change in distance between neighbouring geodesics.

3. The accuracy of geodesics on sector models

In the Regge calculus, geodesics are described as straight lines in the flat sectors

(Williams and Ellis 1981, 1984, Brewin 1993). On the sector models, this description is

implemented by graphic construction. Thus, the geodesics constructed in this way are

in principle quantitatively correct. Their accuracy, however, depends on the resolution

of the sector model. For use in the workshops, the resolution is deliberately chosen to

be coarse, in order for the models to be easy to handle. In this section, we study the

accuracy of the graphic method by comparing its results with numerically computed

geodesics. Two sector models of the equatorial plane of a black hole are used in the

comparison. Both cover the region between r = 1.25 rS and r = 13.75 rS. The first

one has the resolution used in the workshop (∆r = 1.25 rS, ∆φ = π/6), it consists of

10 rings of 12 sectors each (figure 16(a)). The second one has four times this resolution

in each coordinate (∆r = 0.3125 rS, ∆φ = π/24), thus it consists of 40 rings of 48 sectors

each (figure 16(b)). Figure 16 shows the geodesics obtained in the Regge calculus in

comparison with the numerical solutions of the geodesic equation. For this comparison,

the paths computed from the geodesic equation are plotted onto the sector models. The

mapping of Schwarzschild coordinates onto sector points is carried out by interpolation

(Hormann 2005). For a quantitative comparison, the angle of deflection as a function

of the impact parameter was determined on the same two sector models and compared

with the values obtained by integration (figure 17). On the sector models, ten geodesics

were constructed for each value of the impact parameter. They are rotated in φ-direction

with respect to each other and thus have different locations with respect to the sector

boundaries. For the coarser resolution, the agreement is good if the deflection is small,

otherwise the deviation may be significant (figures 16(a), 17(a)). Figure 17(a) shows

that the different locations with respect to the sector boundaries produce a considerable

scatter in the deviations from an integrated geodesic with a given impact parameter,

notably for large deflection angles. This scatter is also apparent in figure 16(a) in

the varying deviations for the three innermost geodesics. For the higher resolution

sector model, the agreement is generally good (figures 16(b), 17(b)). For qualitative

considerations, the accuracy on the sector model used in the workshop is satisfactory.
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(a)

(b)

Figure 16. Geodesics constructed on sector models (red lines) in comparison with

numerical solutions of the geodesic equation (black lines). (a) Sector model with the

resolution used in the workshop. (b) Sector model with four times the resolution in

each coordinate.
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(b)

Figure 17. Relation between the angle of deflection α and the impact parameter b of

a geodesic, determined by constructing geodesics on a sector model (symbols) and by

integrating the geodesic equation (line). (a) Sector model with the resolution used in

the workshop. (b) Sector model with four times the resolution in each coordinate.

4. Conclusions and outlook

4.1. Summary and pedagogical comments

We have shown how sector models can be used as tools to determine geodesics. On

the one hand this provides geometric insight and on the other hand it is a possibility

to determine geodesics graphically. The concept of a geodesic as a locally straight

line is illustrated by implementing this definition directly on a sector model using

pencil and ruler (section 2.1). The graphic construction of geodesics shows that their

direction after crossing a region of curved space differs from the direction they had

before (section 2.2), thus showing clearly how gravitational light deflection arises. Since

the graphically constructed geodesics represent solutions of the geodesic equation, one

obtains quantitatively correct results. Due to the rather coarse resolution of the sector

models used in the workshop, the accuracy of these geodesics is not high. From a

pedagogical point of view, though, a coarse resolution is an advantage. The deficit

angles are then large enough to allow the illustration of the effects of curvature by

considering a single vertex. This provides a clear picture of the connection between

curvature and the run of neighbouring geodesics (section 2.5). In this paper we consider

spatial geodesics only. An extension to geodesics in spacetime is described in the sequel

to this contribution (Kraus and Zahn 2018).

The workshop on geodesics and gravitational light deflection outlined in this

contribution has been developed in several cycles of testing and revision. It was mainly

tested with classes grades 10 to 13 (age 16 to 19 years) and with pre-service teachers.

There are different possible uses for the material presented above, depending on

the teaching goals and on the time available. If the goal is to provide a short and direct
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approach to the phenomenon of gravitational light deflection, e.g. in an astronomy class,

then the workshop can be held as described in sections 2.1 to 2.3 with the sector models

provided as worksheets. No previous knowledge of the concept of metric is required;

the graphic construction is easily carried out and conveys an appropriate understanding

of light paths as geodesics. In a course that aims at introducing the basic concepts of

general relativity, one can let the participants compute the sector models of the sphere

and of the black hole equatorial plane. The participants then acquire the necessary

skills for studying the geometry of a surface when they are given the metric. Answers

are here obtained graphically that in a standard university course would be found by

calculations. Since sector models and the graphic construction of geodesics directly

correspond to the mathematical description by means of the metric and the geodesic

equation, this material can also be used as a supplement to a standard course in order

to strengthen geometric insight.

4.2. Comparison with other graphic approaches

In comparison with other graphic representations of geodesics, constructions on sector

models stand out by the fact that they clearly show geodesics to be locally straight as

well as by their straightforward construction.

Explanations of optical phenomena due to gravitational light deflection, e.g. double

images, typically use drawings that depict light rays as curved lines. In this context, light

rays are described as ”bent”. These drawings and explanations do not express the fact

that light paths are geodesics, i.e. (locally) straight lines, and may thereby encourage

misconceptions. The construction of geodesics on sector models clearly shows that there

is no contradiction between the line being locally straight and the occurrence of light

deflection (figure 8). The construction can also relate geodesics to light rays being drawn

as curved lines: On a world map, the surface of the earth is projected onto the plane

and the geodesics of the sphere appear as curved lines. These are distortions due to the

projection. Analogously, in a projection that maps the sector model of figure 8 onto a

plane circular ring, there will be distortions and the geodesics in the equatorial plane of

the black hole will appear curved.

A commonly used visualization shows geodesics on the embedding surface of the

equatorial plane of a star or a black hole in order to illustrate the deflection of light

(d’Inverno 1992, p. 209). This is equivalent to the geodesics constructed in section 2.2.

When the sectors of the model shown there are joined at the common edges, one obtains

a faceted surface that is an approximation of the embedding surface. The same caveat

applies to the geodesics on the embedding surface as to the geodesics on the sector

model: The subspace is purely spatial so that gravitational light deflection is illustrated

by way of analogy with spacelike geodesics. Experience shows that the concept of an

embedding surface is a difficult one for the audience at which this workshop is targeted

and that the embedding surface is quite likely to be misinterpreted as the geometric

shape of the black hole (Zahn and Kraus 2010). With respect to embedding surfaces,
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sector models have the advantage that their calculation is elementary, especially with

the simplified method of section 2.4. Also, sector models are easily built as physical

paper models and are readily duplicated, so that all participants of a workshop can

carry out the construction of geodesics on models of their own.

A description of geodesics that is related to the representation on sector models

is diSessa’s construction on so-called wedge maps (diSessa 1981). To create a wedge

map, the symmetry plane of a spherically symmetric spacetime is divided up into strips

by a number of radial cuts; the strips (the wedges) are regarded as flat segments. On

the wedges, geodesics are determined numerically as in the Regge calculus. Thus, the

construction of geodesics on the wedge map follows the same prescription that is used

here for sector models. The numerical method, however, is more involved than the

graphic construction used here, concerning both the mathematical description and the

requirement of programming skills.

4.3. Outlook

In paper I, three fundamental questions were raised that should be answered by an

introduction to general relativity: What is a curved spacetime? How does matter move

in a curved spacetime? How is the distribution of matter linked to the curvature of

the spacetime? The concept of curved spaces and spacetimes was discussed in paper I.

To address the second question, the present part II describes geodesics in space and its

sequel describes geodesics in spacetime (Kraus and Zahn 2018). The relation between

curvature and the distribution of matter will be treated in a fourth part of this series.
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