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Abstract

This contribution describes and illustrates light deflection near neutron stars as an exam-
ple of the significance of general relativity for astrophysics. First, a summary is given of the
properties of photon orbits in the Schwarzschild metric, the Schwarzschild metric being a good
approximation to the exterior metric of slowly rotating neutron stars. Secondly, it is illustrated
how light deflection affects the observation of sources on the surface or close to the surface of a
neutron star. Thirdly, it is illustrated that it is imperative to take light deflection into account
when interpreting the pulse profiles of accreting X-ray pulsars, because the ratio of neutron star
radius to Schwarzschild radius strongly affects the pulse profiles predicted from models of the
pulsar’s X-ray emission regions.

1 Introduction

When observed radiation is analyzed to deduce the properties of the source, there are
three quantities of interest: photon energy, intensity and angular distribution. In order
to relate the observed photon energy, intensity, and angular distribution to the photon
energy, intensity, and angular distribution at the source one has to i) follow the photon
orbit between source and observer, #1) find the variation of photon energy along the orbit,
and 4i7) find the variation of intensity along the orbit.

This is straightforward in the absence of gravitational fields, where energy and intensity
are constants along the photon orbits and photon orbits are straight lines. In the presence
of gravitational fields one has to proceed in the following way:

a) Photon orbits are null geodesics x#()\), i.e. the photon four-momentum p*(\) =
dx /d) satisfies the geodesic equation and is null:

d\ Ve P'D" =0 9" p” = 0.

b) The energy measured by a local inertial observer with four-velocity u* at some
location A along the orbit is

E = —g,utp”.

c) The specific intensity I, measured by a local inertial observer is obtained via the
photon number density f which is a Lorentz invariant quantity and is constant along
null geodesics in vacuum:
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d%f(w“(k),p“(k)) =0 f=1c/(h*?).

2 Photons in the Schwarzschild metric

2.1 The Geodesic Equation

As a specific example for the general equations given above we will turn to photon orbits
in the Schwarzschild metric.

The Schwarzschild metric is the metric in vacuum outside a spherical mass distribution.
It depends on a single parameter, the Schwarzschild radius of the central mass M, defined
by rs = 2GM/c* (G the gravitational constant, ¢ the speed of light).

In the usual Schwarzschild coordinates ¢, r, 8, and ¢ the Schwarzschild metric is diag-
onal and reads

Guv = diag(—(1 = rg/r),1/(1 — rg/7), 7%, r? sin’ §).

Because of the spherical symmetry, a photon orbit is always confined to a single plane.
If one chooses the polar coordinates # and ¢ such that this plane is the equatorial plane,
then # = 7/2 is constant along the orbit and p’ = df/d\ = 0.

The geodesic equations for the momentum components p* = dt/d\, p” = dr/d), and
p® = d¢/d) are:

dpt Ts t,r _

X + r2(1—rs/r)pp =0

dp” rs(L=rg/7) 410 s 72
d\ + 2r2 ) 2r2(1 —rg/r) (")

— (1= /)PP =0

dp? 2,
@ 200" = 0.
o TP

These three equations can be integrated analytically once and give

po= K/ -r/r) (1)
po= ()2 — (k0)2(1—ra/r)/r? 4 k(1= re/r) (2)
po= K (3)

where k?, k", k¢ are constants of integration. The constants of integration parametrize
the photon orbits. The next step, therefore, is to clarify their meaning.
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2.2 The Constants of Integration

The condition that p* be a null vector gives 0 = g,,p*p” =k = k" =0.

In order to see the meaning of k!, consider a measurement of photon energy by a
local inertial observer momentarily at rest. The four-velocity of such an observer is
ut = (¢/y/1—14/7,0,0,0) and with the expressions (1) to (3) for the photon momen-
tum, the energy measured turns out to be E = —g,,u”p” = klc/\/1 —rs/r. At large r
the measured energy approaches E, = kfc, so that the constant of integration k! can be
identified as photon energy at infinity over c.

Concerning the third constant of integration, k¢, it is instructive to look at the ratio
b = k?/k! which has the simple geometric meaning of impact parameter of the photon
trajectory. This can most easily be seen in the limit of vanishing central mass ry — 0 as
follows. The photon orbit is completely described by three functions ¢(A), 7(\), and ¢(N).
If one is not interested in the lapse of coordinate time along the orbit, it is sufficient to
find the trajectory ¢(r), i.e., the set of all points (r, ¢) that the photon passes through.
The equation for the trajectory is

dp _ dp/d\ _ p®

dr — dr/d\x  pr

Inserting the expressions (2) and (3) for p® and p" and setting rs = 0 one obtains

do/dr = +b/(r*\/1 — b2 /r?)

which can be integrated to give

sin( — go) = b/r. (4)

Equation (4) is the equation of a straight line expressed in polar coordinates. The
meaning of b is illustrated in figure 1: When a straight line is drawn parallel to the
trajectory and such that it passes through the center of coordinates, then the photon
trajectory is a distance b away from this straight line. Therefore, b is the impact parameter
of the (rs = 0)-trajectory. Since the photon trajectory for nonvanishing mass rs > 0
approaches the zero mass trajectory at large values of r, b is also the impact parameter
of the (rs > 0)-trajectory.

Figure 1 For rs = 0, the photon trajectory with impact parameter b (dashed line) is a distance
b away from a parallel through the center of coordinates (dotted line). The photon trajectory
for rs > 0 (solid line) approaches the (rs = 0)-trajectory for r > rs.
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In summary: Photon orbits in the Schwarzschild metric are parametrized by the photon
energy at infinity E., and the impact parameter b. The photon four-momentum p* =
dx* /d) is given by

E 1 b2 b
o Y . .
p c (1 —rs/r’ \/ 7"2( rs/7),0; r2> (5)

and the photon trajectory ¢(r) is defined by

dp _ de/d\ _ p? b

= = — =4 .
dr  dr/d\ p" (6)

2.3 The Trajectory

The photon trajectory is given by

bdr

¢5(7“)=¢0:|:/r0 ﬁml

This integral is an elliptic integral of the first kind. There is no analytic solution, but
numerical integration using standard routines is straightforward ([1]).

There are two distinct types of photon orbits, depending on whether the square root
in the denominator of equation (7) has zeroes or not.

(7)

1.If b < b, = 1.5V/3rs, then — g—i(l — =) > 0, always. These photon orbits
are defined for 0 < r < oo. Examples are shown in figure 2: the closer b is to
the critical value b, the stronger the deflection of the orbit from a straight line.
When b gets arbitrarily close to b., then the orbit circles the center of coordinates
arbitrarily many times. That part of the orbit where the spiralling about the center
of coordinates occurs and which is nearly circular, is in the immediate vicinity of
r = 1.5r;. The sphere with r = 1.5r is called the photon sphere.

2. If b > b, then /1 — f,—i(l — =) has two zeroes, r; and 73, say, one inside and one
outside the photon sphere: ry < 1.5r; < ro. For each b there are two photon orbits,
one defined for 0 < r < r; and one defined for 75 < r < oo, i.e., photon orbits are
either completely inside or completely outside the photon sphere.

Figure 3 (left) shows photon orbits with r > 5. When b approaches b. from above,
the orbit spirals more and more often around the center of coordinates. The nearly
circular part of the orbit is very close to and just outside the photon sphere. Orbits
with r < 7y are plotted in figure 3 (right). For b approaching b., the orbit is very
close to and just inside the photon sphere.

If the central mass is a star, then only those parts of the orbits exist that are outside the
star. Since most of the deflection occurs close to r = 1.5r, light deflection is important
only if the radius of the star is not too large compared to its Schwarzschild radius.
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Figure 2 Photon orbits for impact parameters b < b.. The shaded area is the region r < rs, the
dashed line marks the photon sphere at r = 1.5 rs. Orbits are shown for the impact parameters

0, 0.37be, 0.98 b, and (1 —2-107%) b, (top to bottom).
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Figure 3 Photon orbits for impact parameters b > b.. Orbits outside the photon sphere are
shown on the left hand side for the impact parameters 1.38 bc, 1.002 b, and (1 + 1.3 - 107%) b,
(top to bottom). Orbits inside the photon sphere are shown on the right hand side for the impact
parameters 1.23 b, 1.0043 b., and (1 + 1.7 - 1075) b, (top to bottom).
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3 Light Deflection Near Neutron Stars

3.1 Masses and Radii of Neutron Stars

As we have seen, the decisive quantity regarding light deflection near a neutron star is
the ratio of its radius R and its Schwarzschild radius r;.

a) observational evidence
There are several mass determinations from the observation of neutron stars in
binary systems ([2]). The most accurately known neutron star masses are those of
the Hulse-Taylor binary pulsar PSR 1913416 and its companion which are 1.442 +
0.003M¢ and 1.386 + 0.003M ), respectively ([3]).

The less precisely determined masses of six eclipsing X-ray pulsars seem to be
consistent with the “canonical” neutron star mass of 1.4Mg. Observational deter-
minations of neutron star radii are nonexistent.

b) neutron star models

Models of nonrotating neutron stars are solutions to the Oppenheimer-Volkoff equa-
tions of hydrostatic equilibrium together with an equation of state ([2]). The key
uncertainty here is the equation of state, especially at nuclear matter density and
beyond. For a given equation of state the neutron star model depends on a sin-
gle parameter, the central density, and there is a range of central densities which
produces a series of stable neutron stars. The most massive neutron star in this
series is the one with the lowest value of R/rs. For different equations of state that
are considered realistic the minimum values of R/rs lie between 1.52 and 2.3. On
the other hand one may be interested in the value of R/rs for the 1.4M neutron
stars that seem to be favoured by observations. For this case, different equations of
state predict values of R/rs between 2 and 3.8. According to all of these models, a
neutron star is larger than its photon sphere, but not necessarily by very much.

¢) fundamental limits

Because of the uncertainty of the equation of state it is interesting to note that there
are lower limits on R/rs based only on the conditions of stability and causality
(2], [4]). According to Buchdahl’s theorem, any stable star must have R/rs >
9/8 = 1.125. With some additional assumptions, mainly the requirement that the
speed of sound be less than the speed of light, Rhoades and Ruffini found a lower
limit of R/rs > 1.235. In principle, therefore, one cannot rule out the existence of
ultracompact neutron stars that are smaller than their photon spheres.

3.2 Radiation from the Neutron Star Surface

Orbits of photons starting at the neutron star surface and reaching an observer some
distance away are shown in figure 4. The impact parameters of these orbits lie between
b = 0 (photon emitted radially) and some maximum value by,ax. For a neutron star larger
than its photon sphere as depicted in figure 4 the impact parameter is maximum for a
photon emitted in tangential direction. From the condition that p” = 0 at r = R then
follows with equation (5) that bmax = R/+/1 — rs/R. For a neutron star smaller than
its photon sphere, a photon that starts tangentially to the stellar surface is on an orbit
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Observer

Figure 4 Orbits of photons reaching an observer from the neutron star surface. The dashed
line marks the photon sphere.

confined within the photon sphere and does not reach the observer. In order for the
photon to leave the photon sphere its impact parameter must be smaller than the critical
impact parameter. Therefore, in this case, bmax = be = 1.5v/375.

Two consequences of light deflection are immediately apparent from figure 4: enhanced
surface visibility and increased angular size.

Consider an observer that is close enough to resolve the neutron star but at the same
time many neutron star radii away: ro > R. Without light deflection the near side of the
neutron star is visible, the far side hidden from view. According to figure 4, light deflection
means that photons emitted on the far side may also reach the observer, so that a larger
part of the surface is visible. Here are some figures that illustrate the enhanced surface
visibility:

R/rq |oo 3 2 1.75 1.509 1.5
visible part

of the 50% 74% 94% 100% 200% oo
surface

For the same observer at an intermediate distance, the angular size of the star as
determined by the outermost photon orbit is & = byax/ro (cf. figure 5). As summarized
in this table

R/rq oo >1.5 <15

bmax R R/\/ 1-— Ts/R be = 1.5\/3’[“5
@ =bpax/T0 | @ = a(R) a=a(MR) a=a(M)

the angular size of a star larger than its photon sphere depends on both its mass and

Observer

Figure 5 The angular size of the neutron star, «, is determined by the impact parameter bmax
of the outermost photon orbit between the stellar surface and the observer.
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its radius. For a star smaller than its photon sphere, the angular size is a function of
mass only and completely independent of the geometric size.

Surface visibility and angular size are illustrated in figure 6 which shows five images
of “neutron stars” with identical radii R and different masses so that R/rs = oo, 3, 2,
1.7 and 1.52 (after [5]). In the last case, the complete surface is visible and part of the
surface is imaged a second time in a thin circular strip at the border of the image.

For a source on the neutron star surface, the photon energies measured by local inertial
observers momentarily at rest at the neutron star surface and at r > rg, respectively, are

related by
Eyx = Eemy1—1s/R

(cf. section 2.2). The intensity change between source and observer is then given by

I, = em(Eoo/-Eem)3 =Iem \V 1- TS/RB

(cf. section 1). Since the factor /1 — rs/R3 has the same value for all points on the
neutron star, a uniformly bright star will produce a uniformly bright image.

For a given neutron star radius R, an increase in rs makes the image both larger and
fainter. These two changes compensate in the sense that the observed photon flux remains
constant: The neutron star subtends a solid angle

RQ

AQ = ER S
1= /R)

The observed photon flux is then

independent of rg.

3.3 Radiation from above the Neutron Star Surface

Since redshift and intensity change between source and observer depend on the radial
coordinate of the source, the total spectrum observed from a source extended in height
is a superposition of spectra with different redshifts and intensity changes.

For a source above the neutron star surface, the two major consequences of light
deflection are enhanced visibility (as before) and focussing.

As regards enhanced visibility, there is a minimum height hp;, such that a source at
a height h > hpy, above the neutron star can never be eclipsed by the star. This is
illustrated in figure 7. For an observer far away from the neutron star (ro > R), here are
some figures for Amin:

R/rs |00 10 ) 3 2.5 2 1.75

co 3.8R 1.32R 0.39R 0.19R 0.03R 0

hmin

Neutron stars with R/rs < 1.75 cannot eclipse anything at all!
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Figure 6 Five images of “neutron stars” with identical geometrical radii R and different
masses: R/rs = 0o, 3, 2, 1.7, and 1.52 (top to bottom) (after [5]). Note the enhanced surface
visibility and the larger angular size with decreasing R/rs.
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Figure 7 A source at a height h > hmnin can never be eclipsed by the neutron star.

Focussing is illustrated in figure 8: A small source with isotropic emission is placed at
r = 1.25R (Fig. 8a). The flux measured by a distant observer with viewing angle 6 is
plotted in polar diagrams for R/rs = oo (Fig. 8b) and R/rs = 2.5 (Fig. 8c). In the former
case, the source is visible for < .« = 126° (with the flux independent of §) and hidden
behind the star for 8 > 6,.x. In the latter case, since h = 0.025R > hmin = 0.19R, the
source is always visible. At § & 180° it is not only visible but also exceedingly bright!

© o/

/

()
® |q/

Figure 8 A small source above the neutron star (a) and the observed flux as a function of
viewing direction for R/rs = oo (b) and R/rs = 2.5 (c). (Note that (b) and (c) are not to scale).
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Figure 9 Visual appearance of a small source above the neutron star as seen from different
directions. The viewing angle (defined to be zero when the source is in between the observer
and the center of the neutron star is 90°, 140°, 160° (left, top to bottom), 170°, 175°, 180°

(right, top to bottom). The images have been computed for a neutron star with R/rs = 2.5 and
a source that is h = 0.25R above the stellar surface.
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Figure 9 illustrates what the source looks like as seen from various directions 6. Note
that at # = 140° the source would be eclipsed if R/rs = co. With R/rs = 2.5 it is instead
slightly elongated. At § = 170° there are two images of the source, produced by photons
passing above and below the neutron star, respectively. As 6 increases, these two images
grow more elongated and finally at § = 180° merge into a ring.

4 Light Deflection in Accreting X-Ray Pulsars

An accreting X-ray pulsar is a strongly magnetized neutron star in a binary system that
accretes matter from its non-degenerate companion. According to the standard model,
the strong magnetic field (a typical surface field strength is 108 7T) channels the matter
along the magnetic field lines onto the magnetic poles where it is stopped and its kinetic
energy converted to X-radiation. When the neutron star rotates, the two polar X-ray
emission regions pass through the observer’s field of view and therefore the X-ray flux
appears pulsed with the period of rotation of the neutron star. The models of the X-ray
emission region are often classified into two types:

i) polar cap models according to which the radiation is emitted from the surface of
the neutron star and #) column models where the site of X-ray emission is the accretion
funnel just above the neutron star surface.

The significance of light deflection for the understanding of the pulse shapes of X-
ray pulsars has been studied by several authors ([6], [7], [8], [9], [10], [11], [12], [13]).
Here, the most simplified phenomenological models will serve as illustrative examples.
A phenomenological polar cap model is shown in figure 10. There is isotropic emission
from a uniformly bright circular polar cap (figure 10a). The half-opening angle a of the
cap is usually estimated to be quite small; we adopt a “standard” value of a = 5° ([2]).
The flux from this cap as measured by a distant observer depends on the viewing angle 6
as shown in polar diagrams for R/rs = oo, i.e., without light deflection (figure 10b) and
R/rs = 2.4 (figure 10c). In the former case the flux is maximum for § = 0° when the
observer looks directly onto the polar cap and drops to zero shortly after § = 90° when
the cap disappears from view behind the neutron star. In the latter case, the flux is also
maximum at 6 = 0° but the cap remains visible up to § = 135°.

The changes in the angular flux distribution are much more dramatic for column

@)

Observer (b) Observer (c) Observer

Figure 10 A phenomenological polar cap model (a) and the observed flux as a function of
direction for R/rs = oo (b) and R/rs = 2.4 (c). The polar cap has a half-opening angle a = 5°,
is uniformly bright, and emits radiation isotropically. (Note that (b) and (c) are not to scale).
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models as illustrated in figure 11. Here, the emission comes from the side of a truncated
radial cone (figure 11a). In the simplest case, the surface of the cone is uniformly bright
and emits isotropically. The dependence of observed flux on viewing angle 6 for a radial
cone with half-opening angle @ = 5°, truncated at r = 1.05 R is shown in polar diagrams
for R/rs = oo (figure 11b), R/rs = 2.5 (figure 11c¢), and R/rs = 2 (figure 11d). Seen
from above at 8 = 0°, the flux is zero, because the top of the truncated cone does not
radiate. In figure 11b and 11c the maximum flux is seen sideways and at high 8 the cone
disappears behind the neutron star. In the case of figure 11d, however, the height of the
cone is h > hpin, S0 that the source is never eclipsed by the neutron star and focussing
produces a sharp increase in flux towards # = 180°.

Since the pulse profiles directly reflect the angular flux distribution, it is clear that for a
given model of the emission region the parameter R/r¢ plays a decisive role in determining
the pulse shapes. This is illustrated in figure 12 for the cap model. A neutron star with

@)

0 Observer

(c) g .

- (d) ., Obs.

\/

Figure 11 A phenomenological column model (a) and the observed flux as a function of
direction for R/rs = oo (b), R/rs = 2.5 (c), and R/rs =2 (d). The column is a truncated radial
cone of half-opening angle @ = 5° with uniform and isotropic emission from the side between
radial coordinates R and 1.05 R. (Note that (b), (c) and (d) are not to scale).
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two polar caps (o = 5°) that are 6, = 20° away from the rotation axis is observed at
6, = 80° (figure 12, top). Without light deflection (R/rs = oo, Fig. 12, left) both polar
caps are visible only part of the time. Their contributions to the pulse profile, labeled Fj
and Fs, therefore vanish during part of the pulse period. The total pulse profile, labeled
F; + F5, can at nearly all phases be attributed to either one or the other polar cap.
At R/rs = 2.4 (figure 12, right), both polar caps are always visible so that F} and Fy
never vanish. The total pulse profile is at all phases due to contributions of both polar
caps. The most conspicuous change is the dramatic reduction in modulation of the pulse
profile. This can also be understood in terms of the enhanced surface visibility: 84%
of the neutron star surface are visible to the observer for R/r; = 2.4. When basically
everything is visible all the time, then rotation of the star cannot produce a substantial
amount of modulation of the flux.

More detailed modelling of polar caps and of columns will in general predict non-
uniform and non-isotropic emission. In this case, light deflection will not necessarily sup-

rotation
axis

0 observer
(o]

/ |
magnetic
axis

normalized flux

x
=
°
(]
N
©
£
o
c
0.0 L L 1 1
0.0 0.5 1.0 15 0.5 1.0 15

phase phase

Figure 12 Pulse profiles predicted for two polar caps (top) with the same parameters as in
figure 10 for R/rs = oo (left) and R/rs = 2.4 (right). The magnetic axis is 6, = 20° away from
the rotation axis and the direction of observation is 8, = 80°.
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press the modulation, but it will certainly affect the predicted pulse shape in a significant

way.
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