
Light Deetion Near Neutron StarsU. KrausAbstratThis ontribution desribes and illustrates light deetion near neutron stars as an exam-ple of the signi�ane of general relativity for astrophysis. First, a summary is given of theproperties of photon orbits in the Shwarzshild metri, the Shwarzshild metri being a goodapproximation to the exterior metri of slowly rotating neutron stars. Seondly, it is illustratedhow light deetion a�ets the observation of soures on the surfae or lose to the surfae of aneutron star. Thirdly, it is illustrated that it is imperative to take light deetion into aountwhen interpreting the pulse pro�les of areting X-ray pulsars, beause the ratio of neutron starradius to Shwarzshild radius strongly a�ets the pulse pro�les predited from models of thepulsar's X-ray emission regions.1 IntrodutionWhen observed radiation is analyzed to dedue the properties of the soure, there arethree quantities of interest: photon energy, intensity and angular distribution. In orderto relate the observed photon energy, intensity, and angular distribution to the photonenergy, intensity, and angular distribution at the soure one has to i) follow the photonorbit between soure and observer, ii) �nd the variation of photon energy along the orbit,and iii) �nd the variation of intensity along the orbit.This is straightforward in the absene of gravitational �elds, where energy and intensityare onstants along the photon orbits and photon orbits are straight lines. In the preseneof gravitational �elds one has to proeed in the following way:a) Photon orbits are null geodesis x�(�), i.e. the photon four-momentum p�(�) =dx=d� satis�es the geodesi equation and is null:dp�d� + ���� p�p� = 0 g��p�p� = 0:b) The energy measured by a loal inertial observer with four-veloity u� at someloation � along the orbit is E = �g��u�p� :) The spei� intensity I� measured by a loal inertial observer is obtained via thephoton number density f whih is a Lorentz invariant quantity and is onstant alongnull geodesis in vauum:



2 U. Krausdd�f(x�(�);p�(�)) = 0 f = I�2=(h4�3):2 Photons in the Shwarzshild metri2.1 The Geodesi EquationAs a spei� example for the general equations given above we will turn to photon orbitsin the Shwarzshild metri.The Shwarzshild metri is the metri in vauum outside a spherial mass distribution.It depends on a single parameter, the Shwarzshild radius of the entral massM , de�nedby rs = 2GM=2 (G the gravitational onstant,  the speed of light).In the usual Shwarzshild oordinates t, r, �, and � the Shwarzshild metri is diag-onal and reads g�� = diag(�(1� rs=r); 1=(1� rs=r); r2; r2 sin2 �):Beause of the spherial symmetry, a photon orbit is always on�ned to a single plane.If one hooses the polar oordinates � and � suh that this plane is the equatorial plane,then � = �=2 is onstant along the orbit and p� = d�=d� = 0.The geodesi equations for the momentum omponents pt = dt=d�, pr = dr=d�, andp� = d�=d� are: dptd� + rsr2(1� rs=r)ptpr = 0dprd� + rs(1� rs=r)2r2 (pt)2 � rs2r2(1� rs=r) (pr)2� r(1� rs=r)(p�)2 = 0dp�d� + 2r p�pr = 0:These three equations an be integrated analytially one and givept = kt=(1� rs=r) (1)pr = �q(kt)2 � (k�)2(1� rs=r)=r2 + kr(1� rs=r) (2)p� = k�=r2 (3)where kt, kr, k� are onstants of integration. The onstants of integration parametrizethe photon orbits. The next step, therefore, is to larify their meaning.



Light Deetion Near Neutron Stars 32.2 The Constants of IntegrationThe ondition that p� be a null vetor gives 0 = g��p�p� = kr ) kr = 0.In order to see the meaning of kt, onsider a measurement of photon energy by aloal inertial observer momentarily at rest. The four-veloity of suh an observer isu� = (=p1� rs=r;0;0;0) and with the expressions (1) to (3) for the photon momen-tum, the energy measured turns out to be E = �g��u�p� = kt=p1� rs=r. At large rthe measured energy approahes E1 = kt, so that the onstant of integration kt an beidenti�ed as photon energy at in�nity over .Conerning the third onstant of integration, k�, it is instrutive to look at the ratiob � k�=kt whih has the simple geometri meaning of impat parameter of the photontrajetory. This an most easily be seen in the limit of vanishing entral mass rs ! 0 asfollows. The photon orbit is ompletely desribed by three funtions t(�), r(�), and �(�).If one is not interested in the lapse of oordinate time along the orbit, it is suÆient to�nd the trajetory �(r), i.e., the set of all points (r, �) that the photon passes through.The equation for the trajetory is d�dr = d�=d�dr=d� = p�prInserting the expressions (2) and (3) for p� and pr and setting rs = 0 one obtainsd�=dr = �b=(r2p1� b2=r2)whih an be integrated to give sin(�� �0) = �b=r: (4)Equation (4) is the equation of a straight line expressed in polar oordinates. Themeaning of b is illustrated in �gure 1: When a straight line is drawn parallel to thetrajetory and suh that it passes through the enter of oordinates, then the photontrajetory is a distane b away from this straight line. Therefore, b is the impat parameterof the (rs = 0)-trajetory. Sine the photon trajetory for nonvanishing mass rs > 0approahes the zero mass trajetory at large values of r, b is also the impat parameterof the (rs > 0)-trajetory.
b

bFigure 1 For rs = 0, the photon trajetory with impat parameter b (dashed line) is a distaneb away from a parallel through the enter of oordinates (dotted line). The photon trajetoryfor rs > 0 (solid line) approahes the (rs = 0)-trajetory for r � rs.



4 U. KrausIn summary: Photon orbits in the Shwarzshild metri are parametrized by the photonenergy at in�nity E1 and the impat parameter b. The photon four-momentum p� =dx�=d� is given byp� = E1  11� rs=r ;�r1� b2r2 (1� rs=r); 0; br2! (5)and the photon trajetory �(r) is de�ned byd�dr = d�=d�dr=d� = p�pr = � br2q1� b2r2 (1� rsr ) : (6)2.3 The TrajetoryThe photon trajetory is given by�(r) = �0 � Z rr0 b drr2q1� b2r2 (1� rsr ) : (7)This integral is an ellipti integral of the �rst kind. There is no analyti solution, butnumerial integration using standard routines is straightforward ([1℄).There are two distint types of photon orbits, depending on whether the square rootin the denominator of equation (7) has zeroes or not.1. If b < b = 1:5p3rs, then q1� b2r2 (1� rsr ) > 0, always. These photon orbitsare de�ned for 0 < r < 1. Examples are shown in �gure 2: the loser b is tothe ritial value b, the stronger the deetion of the orbit from a straight line.When b gets arbitrarily lose to b, then the orbit irles the enter of oordinatesarbitrarily many times. That part of the orbit where the spiralling about the enterof oordinates ours and whih is nearly irular, is in the immediate viinity ofr = 1:5rs. The sphere with r = 1:5rs is alled the photon sphere.2. If b > b, then q1� b2r2 (1� rsr ) has two zeroes, r1 and r2, say, one inside and oneoutside the photon sphere: r1 < 1:5rs < r2. For eah b there are two photon orbits,one de�ned for 0 < r < r1 and one de�ned for r2 < r <1, i.e., photon orbits areeither ompletely inside or ompletely outside the photon sphere.Figure 3 (left) shows photon orbits with r > r2. When b approahes b from above,the orbit spirals more and more often around the enter of oordinates. The nearlyirular part of the orbit is very lose to and just outside the photon sphere. Orbitswith r < r1 are plotted in �gure 3 (right). For b approahing b, the orbit is verylose to and just inside the photon sphere.If the entral mass is a star, then only those parts of the orbits exist that are outside thestar. Sine most of the deetion ours lose to r = 1:5rs, light deetion is importantonly if the radius of the star is not too large ompared to its Shwarzshild radius.
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Figure 2 Photon orbits for impat parameters b < b. The shaded area is the region r < rs, thedashed line marks the photon sphere at r = 1:5 rs. Orbits are shown for the impat parameters0, 0:37 b, 0:98 b, and (1� 2 � 10�6) b (top to bottom).
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Figure 3 Photon orbits for impat parameters b > b. Orbits outside the photon sphere areshown on the left hand side for the impat parameters 1:38 b, 1:002 b, and (1 + 1:3 � 10�6) b(top to bottom). Orbits inside the photon sphere are shown on the right hand side for the impatparameters 1:23 b, 1:0043 b, and (1 + 1:7 � 10�5) b (top to bottom).



Light Deetion Near Neutron Stars 73 Light Deetion Near Neutron Stars3.1 Masses and Radii of Neutron StarsAs we have seen, the deisive quantity regarding light deetion near a neutron star isthe ratio of its radius R and its Shwarzshild radius rs.a) observational evideneThere are several mass determinations from the observation of neutron stars inbinary systems ([2℄). The most aurately known neutron star masses are those ofthe Hulse-Taylor binary pulsar PSR 1913+16 and its ompanion whih are 1:442�0:003M� and 1:386� 0:003M�, respetively ([3℄).The less preisely determined masses of six elipsing X-ray pulsars seem to beonsistent with the \anonial" neutron star mass of 1:4M�. Observational deter-minations of neutron star radii are nonexistent.b) neutron star modelsModels of nonrotating neutron stars are solutions to the Oppenheimer-Volko� equa-tions of hydrostati equilibrium together with an equation of state ([2℄). The keyunertainty here is the equation of state, espeially at nulear matter density andbeyond. For a given equation of state the neutron star model depends on a sin-gle parameter, the entral density, and there is a range of entral densities whihprodues a series of stable neutron stars. The most massive neutron star in thisseries is the one with the lowest value of R=rs. For di�erent equations of state thatare onsidered realisti the minimum values of R=rs lie between 1:52 and 2:3. Onthe other hand one may be interested in the value of R=rs for the 1:4M� neutronstars that seem to be favoured by observations. For this ase, di�erent equations ofstate predit values of R=rs between 2 and 3:8. Aording to all of these models, aneutron star is larger than its photon sphere, but not neessarily by very muh.) fundamental limitsBeause of the unertainty of the equation of state it is interesting to note that thereare lower limits on R=rs based only on the onditions of stability and ausality([2℄, [4℄). Aording to Buhdahl's theorem, any stable star must have R=rs >9=8 = 1:125. With some additional assumptions, mainly the requirement that thespeed of sound be less than the speed of light, Rhoades and RuÆni found a lowerlimit of R=rs > 1:235. In priniple, therefore, one annot rule out the existene ofultraompat neutron stars that are smaller than their photon spheres.3.2 Radiation from the Neutron Star SurfaeOrbits of photons starting at the neutron star surfae and reahing an observer somedistane away are shown in �gure 4. The impat parameters of these orbits lie betweenb = 0 (photon emitted radially) and some maximum value bmax. For a neutron star largerthan its photon sphere as depited in �gure 4 the impat parameter is maximum for aphoton emitted in tangential diretion. From the ondition that pr = 0 at r = R thenfollows with equation (5) that bmax = R=p1� rs=R. For a neutron star smaller thanits photon sphere, a photon that starts tangentially to the stellar surfae is on an orbit
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ObserverFigure 4 Orbits of photons reahing an observer from the neutron star surfae. The dashedline marks the photon sphere.on�ned within the photon sphere and does not reah the observer. In order for thephoton to leave the photon sphere its impat parameter must be smaller than the ritialimpat parameter. Therefore, in this ase, bmax = b = 1:5p3rs.Two onsequenes of light deetion are immediately apparent from �gure 4: enhanedsurfae visibility and inreased angular size.Consider an observer that is lose enough to resolve the neutron star but at the sametime many neutron star radii away: r0 � R. Without light deetion the near side of theneutron star is visible, the far side hidden from view. Aording to �gure 4, light deetionmeans that photons emitted on the far side may also reah the observer, so that a largerpart of the surfae is visible. Here are some �gures that illustrate the enhaned surfaevisibility:R=rs 1 3 2 1:75 1:509 1:5visible partof the 50% 74% 94% 100% 200% 1surfaeFor the same observer at an intermediate distane, the angular size of the star asdetermined by the outermost photon orbit is � = bmax=r0 (f. �gure 5). As summarizedin this tableR=rs 1 > 1:5 < 1:5bmax R R=p1� rs=R b = 1:5p3rs� = bmax=r0 � = �(R) � = �(M;R) � = �(M)the angular size of a star larger than its photon sphere depends on both its mass and
Observer
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αFigure 5 The angular size of the neutron star, �, is determined by the impat parameter bmaxof the outermost photon orbit between the stellar surfae and the observer.



Light Deetion Near Neutron Stars 9its radius. For a star smaller than its photon sphere, the angular size is a funtion ofmass only and ompletely independent of the geometri size.Surfae visibility and angular size are illustrated in �gure 6 whih shows �ve imagesof \neutron stars" with idential radii R and di�erent masses so that R=rs = 1, 3, 2,1:7 and 1:52 (after [5℄). In the last ase, the omplete surfae is visible and part of thesurfae is imaged a seond time in a thin irular strip at the border of the image.For a soure on the neutron star surfae, the photon energies measured by loal inertialobservers momentarily at rest at the neutron star surfae and at r � rs, respetively, arerelated by E1 = Eemp1� rs=R(f. setion 2.2). The intensity hange between soure and observer is then given byI1 = Iem(E1=Eem)3 = Iemp1� rs=R3(f. setion 1). Sine the fator p1� rs=R3 has the same value for all points on theneutron star, a uniformly bright star will produe a uniformly bright image.For a given neutron star radius R, an inrease in rs makes the image both larger andfainter. These two hanges ompensate in the sense that the observed photon ux remainsonstant: The neutron star subtends a solid angle�
 = ��2 = � R2r20(1� rs=R) :The observed photon ux is thenN = I1�
E1 = IemEem�R2r20independent of rs.3.3 Radiation from above the Neutron Star SurfaeSine redshift and intensity hange between soure and observer depend on the radialoordinate of the soure, the total spetrum observed from a soure extended in heightis a superposition of spetra with di�erent redshifts and intensity hanges.For a soure above the neutron star surfae, the two major onsequenes of lightdeetion are enhaned visibility (as before) and foussing.As regards enhaned visibility, there is a minimum height hmin suh that a soure ata height h � hmin above the neutron star an never be elipsed by the star. This isillustrated in �gure 7. For an observer far away from the neutron star (r0 � R), here aresome �gures for hmin:R=rs 1 10 5 3 2:5 2 1:75hmin 1 3:8R 1:32R 0:39R 0:19R 0:03R 0Neutron stars with R=rs � 1:75 annot elipse anything at all!
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Figure 6 Five images of \neutron stars" with idential geometrial radii R and di�erentmasses: R=rs = 1, 3, 2, 1:7, and 1:52 (top to bottom) (after [5℄). Note the enhaned surfaevisibility and the larger angular size with dereasing R=rs.
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Observer

hmin

r0Figure 7 A soure at a height h � hmin an never be elipsed by the neutron star.Foussing is illustrated in �gure 8: A small soure with isotropi emission is plaed atr = 1:25R (Fig. 8a). The ux measured by a distant observer with viewing angle � isplotted in polar diagrams for R=rs =1 (Fig. 8b) and R=rs = 2:5 (Fig. 8). In the formerase, the soure is visible for � � �max = 126Æ (with the ux independent of �) and hiddenbehind the star for � > �max. In the latter ase, sine h = 0:025R > hmin = 0:19R, thesoure is always visible. At � � 180Æ it is not only visible but also exeedingly bright!
(a) θ
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θ

Figure 8 A small soure above the neutron star (a) and the observed ux as a funtion ofviewing diretion for R=rs =1 (b) and R=rs = 2:5 (). (Note that (b) and () are not to sale).
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Figure 9 Visual appearane of a small soure above the neutron star as seen from di�erentdiretions. The viewing angle (de�ned to be zero when the soure is in between the observerand the enter of the neutron star is 90Æ, 140Æ, 160Æ (left, top to bottom), 170Æ, 175Æ, 180Æ(right, top to bottom). The images have been omputed for a neutron star with R=rs = 2:5 anda soure that is h = 0:25R above the stellar surfae.



Light Deetion Near Neutron Stars 13Figure 9 illustrates what the soure looks like as seen from various diretions �. Notethat at � = 140Æ the soure would be elipsed if R=rs =1. With R=rs = 2:5 it is insteadslightly elongated. At � = 170Æ there are two images of the soure, produed by photonspassing above and below the neutron star, respetively. As � inreases, these two imagesgrow more elongated and �nally at � = 180Æ merge into a ring.4 Light Deetion in Areting X-Ray PulsarsAn areting X-ray pulsar is a strongly magnetized neutron star in a binary system thataretes matter from its non-degenerate ompanion. Aording to the standard model,the strong magneti �eld (a typial surfae �eld strength is 108 T ) hannels the matteralong the magneti �eld lines onto the magneti poles where it is stopped and its kinetienergy onverted to X-radiation. When the neutron star rotates, the two polar X-rayemission regions pass through the observer's �eld of view and therefore the X-ray uxappears pulsed with the period of rotation of the neutron star. The models of the X-rayemission region are often lassi�ed into two types:i) polar ap models aording to whih the radiation is emitted from the surfae ofthe neutron star and ii) olumn models where the site of X-ray emission is the aretionfunnel just above the neutron star surfae.The signi�ane of light deetion for the understanding of the pulse shapes of X-ray pulsars has been studied by several authors ([6℄, [7℄, [8℄, [9℄, [10℄, [11℄, [12℄, [13℄).Here, the most simpli�ed phenomenologial models will serve as illustrative examples.A phenomenologial polar ap model is shown in �gure 10. There is isotropi emissionfrom a uniformly bright irular polar ap (�gure 10a). The half-opening angle � of theap is usually estimated to be quite small; we adopt a \standard" value of � = 5Æ ([2℄).The ux from this ap as measured by a distant observer depends on the viewing angle �as shown in polar diagrams for R=rs =1, i.e., without light deetion (�gure 10b) andR=rs = 2:4 (�gure 10). In the former ase the ux is maximum for � = 0Æ when theobserver looks diretly onto the polar ap and drops to zero shortly after � = 90Æ whenthe ap disappears from view behind the neutron star. In the latter ase, the ux is alsomaximum at � = 0Æ but the ap remains visible up to � = 135Æ.The hanges in the angular ux distribution are muh more dramati for olumn
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Figure 10 A phenomenologial polar ap model (a) and the observed ux as a funtion ofdiretion for R=rs =1 (b) and R=rs = 2:4 (). The polar ap has a half-opening angle � = 5Æ,is uniformly bright, and emits radiation isotropially. (Note that (b) and () are not to sale).



14 U. Krausmodels as illustrated in �gure 11. Here, the emission omes from the side of a trunatedradial one (�gure 11a). In the simplest ase, the surfae of the one is uniformly brightand emits isotropially. The dependene of observed ux on viewing angle � for a radialone with half-opening angle � = 5Æ, trunated at r = 1:05R is shown in polar diagramsfor R=rs = 1 (�gure 11b), R=rs = 2:5 (�gure 11), and R=rs = 2 (�gure 11d). Seenfrom above at � = 0Æ, the ux is zero, beause the top of the trunated one does notradiate. In �gure 11b and 11 the maximum ux is seen sideways and at high � the onedisappears behind the neutron star. In the ase of �gure 11d, however, the height of theone is h > hmin, so that the soure is never elipsed by the neutron star and foussingprodues a sharp inrease in ux towards � = 180Æ.Sine the pulse pro�les diretly reet the angular ux distribution, it is lear that for agiven model of the emission region the parameterR=rs plays a deisive role in determiningthe pulse shapes. This is illustrated in �gure 12 for the ap model. A neutron star with
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Figure 11 A phenomenologial olumn model (a) and the observed ux as a funtion ofdiretion for R=rs =1 (b), R=rs = 2:5 (), and R=rs = 2 (d). The olumn is a trunated radialone of half-opening angle � = 5Æ with uniform and isotropi emission from the side betweenradial oordinates R and 1:05R. (Note that (b), () and (d) are not to sale).



Light Deetion Near Neutron Stars 15two polar aps (� = 5Æ) that are �m = 20Æ away from the rotation axis is observed at�o = 80Æ (�gure 12, top). Without light deetion (R=rs = 1, Fig. 12, left) both polaraps are visible only part of the time. Their ontributions to the pulse pro�le, labeled F1and F2, therefore vanish during part of the pulse period. The total pulse pro�le, labeledF1 + F2, an at nearly all phases be attributed to either one or the other polar ap.At R=rs = 2:4 (�gure 12, right), both polar aps are always visible so that F1 and F2never vanish. The total pulse pro�le is at all phases due to ontributions of both polaraps. The most onspiuous hange is the dramati redution in modulation of the pulsepro�le. This an also be understood in terms of the enhaned surfae visibility: 84%of the neutron star surfae are visible to the observer for R=rs = 2:4. When basiallyeverything is visible all the time, then rotation of the star annot produe a substantialamount of modulation of the ux.More detailed modelling of polar aps and of olumns will in general predit non-uniform and non-isotropi emission. In this ase, light deetion will not neessarily sup-
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Figure 12 Pulse pro�les predited for two polar aps (top) with the same parameters as in�gure 10 for R=rs =1 (left) and R=rs = 2:4 (right). The magneti axis is �m = 20Æ away fromthe rotation axis and the diretion of observation is �o = 80Æ.
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